Protein Metabolism - How various hormones create anabolism.
A complete protein provides the raw materials (amino acids) for protein synthesis. We understand that anabolism only occurs when protein synthesis exceeds protein degradation/breakdown. Exercise creates an environment where anabolism is possible if protein is supplied. In that environment protein synthesis will exceed protein breakdown resulting in net tissue accrual.
However ultimate body transformation requires maximum anabolism. This is primarily achieved through the complementary interplay of those hormones that affect the components of protein metabolism. By understanding precisely how each hormone or factor affects the components responsible for the outcome of protein metabolism one can better achieve an anabolic response.
The primary components responsible for determining the outcome of protein metabolism are:
Whole Body Protein Synthesis - synthesis throughout organs, non skeletal muscle & skeletal muscle
Muscle Protein Synthesis - synthesis in skeletal muscle only
Whole Body Protein Breakdown/Degradation - breakdown throughout organs, non skeletal muscle & skeletal muscle
Muscle Protein Breakdown/Degradation - breakdown in skeletal muscle only
Oxidation - amino acid breakdown & subsequent use for energy
Amino Acid Transport into Cells - movement of amino acids into the cells for incorporation into protein chains
These components will be discussed in relation to the hormones and factors that manipulate them. We will examine the science behind these hormones so that by the end of this section we will understand for instance exactly how insulin and growth hormone relate to one another and how only as an ensemble are they truly anabolic.
The hormones and factors we will examine are:
Insulin
Growth Hormone
Amino Acid Pool
Exercise
Blood Flow
IGF-1
IGF-1 bound to IGFBP-3
Androgens
Thyroid Hormones
Insulin
There is indirect evidence that post-meal hyperinsulinemia [excess levels of circulating insulin] induces protein anabolism, other than through the suppression of whole-body proteolysis [i.e. protein breakdown/ catabolism], by facilitating the incorporation of dietary amino acids into new proteins. In fact, when post-meal hyperinsulinemia and hyperaminoacidemia [high insulin & high amino acids] are reproduced in normal subjects by a combined intravenous infusion of insulin and amino acids, the estimates of whole-body protein synthesis increase more than after amino acids alone 20.
[Insulin + Amino Acids = greater increase in entire body protein synthesis]
The stimulatory effect of hyperinsulinemia on whole-body protein synthesis cannot be demonstrated when insulin alone is infused 20-25. In this case, by reducing the rate of protein breakdown, hyperinsulinemia decreased the intracellular concentrations of most amino acids 26, limiting their utilization for protein synthesis 27.
[In other words the store of amino acids (often called the intracellular amino acid pool) is replenished in two ways: one by eating/ingestion of protein & the other by the breakdown of protein in muscle (i.e. protein degradation). This latter, protein degradation reduces protein to its constituent parts (amino acids) which will be transported outside the cell & either be further removed or remain in the amino acid pool (which resides between muscle cells) and is available for reuse in muscle for the next round of transport into muscle & new protein synthesis. Insulin reduces protein breakdown so the amino acid pools are not replenished.]
Branched-chain amino acids (Leucine, Isoleucine, Valine) are particularly sensitive to hyperinsulinemia 28 and it has been shown the insulin-induced suppression of plasma isoleucine concentration 29, i.e. of a single essential amino acid, is sufficient to decrease whole body protein synthesis.
[So in essence protein synthesis requires all the essential amino acids. If one is missing no protein synthesis will occur.]
The results of several studies demonstrate that the overall effect of insulin on the rate of change in whole-body proteins comes from the combined results of the differential effects of the hormone on the rates of protein breakdown and synthesis of individual proteins. For instance, despite the rate of whole-body proteolysis [breakdown] being decreased by insulin 20-25, the rate of muscle protein proteolysis is not affected by local hyperinsulinemia 30. Such a differential effect can be explained by the fact that insulin decreases the proteolytic activity of lysosomes [which are a degradation pathway acting throughout the body] but does not control the ubiquitin system [which is active in muscle breakdown] 31 that is responsible for the bulk of muscle proteolysis 31.
[So insulin decreases protein breakdown/degradation throughout the entire body but does not inhibit protein breakdown specifically in muscle.]
Insulin increases the amount of protein deposited in muscle by directly increasing the rate of protein synthesis (40-60% as measured by lysine & phenylalanine disappearance from intracellular pools). For the most part (two exceptions) Insulin does not increase (or regulate) transmember amino acid transport. Therefore transportation of amino acids is not a primary mediator of insulin anabolic actions in muscle 40.
[So Insulin's primary modes of action are reduction of whole-body protein breakdown as discussed already & in muscle an increase in the rate of protein synthesis. Insulin draws on the intracellular pool of amino acids to affect this increased synthesis. It is possible to run out of amino acids from that pool. Insulin can suck the reservoir dry so to speak.
In addition insulin in general (there is an exception) does not increase the rate of transportation of amino acids across the cell membrane into the cell. That remains normal. But the benefit of insulin in muscle is that it increases protein synthesis. However other things are needed besides insulin to affect overall anabolism.]
Insulin draws on an existing intracellular pool of amino acids. When amino acid concentrations are maintained at levels higher than normal during systemic insulin administration insulin increased muscle protein synthesis 40.
[So anabolism occurs when both insulin increased protein synthesis occurs and amino acid levels are maintained higher then normal. The primary way to effect this is to increase amino acid/protein ingestion.]
Insulin does not significantly modify protein breakdown in muscle. It has been shown that, during adequate amino acid supply, the most important degradative system in muscle is an ATP-independent system that requires the presence of a specialized protein, termed ubiquitin. This system is not sensitive to insulin. Concerning protein breakdown insulin apparently plays a role only in the regulation of the lysosome activity. These intracellular organelles are not involved in the myofibrillar protein degradation in normal conditions, but only in the presence of low insulin levels or decreased amino acid availability) 31 .
[So again insulin will increase protein synthesis in muscle but will not inhibit protein breakdown. So in general anabolism will occur if more protein synthesis then protein breakdown occurs.]
Following protein degradation, the amino acids from the degradation event are either transported outward (or in the case of leucine oxidized) or are redirected back into protein synthesis. Phenylalanine & leucine have been shown to be redirected back into protein synthesis while lysine may not 30 .
Insulin induces hyperpolarization in the skeletal muscle cells by directly activating the sodium ion (Na+) and potassium ion (K+) -ATPase pump. Those amino acids which are strongly "attracted" to the electrochemical characteristics of the cell membrane are more readily taken up into muscle from the intracellular pool of amino acids. Alanine & lysine are two amino acids that have this attraction and are more readily drawn into muscle by insulin 30 .
[When protein in muscle is broken down and its constituents removed back to the amino acid pool, those amino acids may be removed from muscle pools entirely, may be reused for new synthesis or for some amino acids oxidized or used for energy. It would not benefit anabolism to lose the important amino acid leucine to oxidation.
Insulin which in general doesn't increase transport of amino acids from the pool into cells, does so for a few amino acids which use NA+ & K+ channels, namely alanine & lysine.]
The branched-chain amino acids (leucine, valine, and isoleucine) and the aromatic (phenylalanine and tyrosine) are preferably transported through system L . This sodium-independent system is unable to generate high transmembrane gradients for its substrates. It has been shown that the kinetic characteristics of system L are not influenced by insulin 30.
[So insulin which has no effect on this mode of transport does not increase the uptake of some very important amino acids.]
Blood flow has been found to increase local amino acid delivery to muscle and secondarily increase amino acid transport. This effect may be responsible for increase in leucine uptake.
[This is an extremely important way in which amino acids are drawn to muscle and into cells. This important amino acid leucine has been shown to make its way into cells via increase in blood flow.]
Alanine synthesis (which is a function of pyruvate) also increases in the presence of insulin because insulin increases glucose uptake & intracellular pyruvate in muscle 30 .
[Certain amino acids can be synthesized from the breakdown of other amino acids. Alanine is one of them. Alanine is often used for energy and so protein synthesis rate or anabolism may depend on the availability of alanine not yet oxidized. The fact that insulin increases alanine synthesis is a desirable effect.
A complete protein provides the raw materials (amino acids) for protein synthesis. We understand that anabolism only occurs when protein synthesis exceeds protein degradation/breakdown. Exercise creates an environment where anabolism is possible if protein is supplied. In that environment protein synthesis will exceed protein breakdown resulting in net tissue accrual.
However ultimate body transformation requires maximum anabolism. This is primarily achieved through the complementary interplay of those hormones that affect the components of protein metabolism. By understanding precisely how each hormone or factor affects the components responsible for the outcome of protein metabolism one can better achieve an anabolic response.
The primary components responsible for determining the outcome of protein metabolism are:
Whole Body Protein Synthesis - synthesis throughout organs, non skeletal muscle & skeletal muscle
Muscle Protein Synthesis - synthesis in skeletal muscle only
Whole Body Protein Breakdown/Degradation - breakdown throughout organs, non skeletal muscle & skeletal muscle
Muscle Protein Breakdown/Degradation - breakdown in skeletal muscle only
Oxidation - amino acid breakdown & subsequent use for energy
Amino Acid Transport into Cells - movement of amino acids into the cells for incorporation into protein chains
These components will be discussed in relation to the hormones and factors that manipulate them. We will examine the science behind these hormones so that by the end of this section we will understand for instance exactly how insulin and growth hormone relate to one another and how only as an ensemble are they truly anabolic.
The hormones and factors we will examine are:
Insulin
Growth Hormone
Amino Acid Pool
Exercise
Blood Flow
IGF-1
IGF-1 bound to IGFBP-3
Androgens
Thyroid Hormones
Insulin
There is indirect evidence that post-meal hyperinsulinemia [excess levels of circulating insulin] induces protein anabolism, other than through the suppression of whole-body proteolysis [i.e. protein breakdown/ catabolism], by facilitating the incorporation of dietary amino acids into new proteins. In fact, when post-meal hyperinsulinemia and hyperaminoacidemia [high insulin & high amino acids] are reproduced in normal subjects by a combined intravenous infusion of insulin and amino acids, the estimates of whole-body protein synthesis increase more than after amino acids alone 20.
[Insulin + Amino Acids = greater increase in entire body protein synthesis]
The stimulatory effect of hyperinsulinemia on whole-body protein synthesis cannot be demonstrated when insulin alone is infused 20-25. In this case, by reducing the rate of protein breakdown, hyperinsulinemia decreased the intracellular concentrations of most amino acids 26, limiting their utilization for protein synthesis 27.
[In other words the store of amino acids (often called the intracellular amino acid pool) is replenished in two ways: one by eating/ingestion of protein & the other by the breakdown of protein in muscle (i.e. protein degradation). This latter, protein degradation reduces protein to its constituent parts (amino acids) which will be transported outside the cell & either be further removed or remain in the amino acid pool (which resides between muscle cells) and is available for reuse in muscle for the next round of transport into muscle & new protein synthesis. Insulin reduces protein breakdown so the amino acid pools are not replenished.]
Branched-chain amino acids (Leucine, Isoleucine, Valine) are particularly sensitive to hyperinsulinemia 28 and it has been shown the insulin-induced suppression of plasma isoleucine concentration 29, i.e. of a single essential amino acid, is sufficient to decrease whole body protein synthesis.
[So in essence protein synthesis requires all the essential amino acids. If one is missing no protein synthesis will occur.]
The results of several studies demonstrate that the overall effect of insulin on the rate of change in whole-body proteins comes from the combined results of the differential effects of the hormone on the rates of protein breakdown and synthesis of individual proteins. For instance, despite the rate of whole-body proteolysis [breakdown] being decreased by insulin 20-25, the rate of muscle protein proteolysis is not affected by local hyperinsulinemia 30. Such a differential effect can be explained by the fact that insulin decreases the proteolytic activity of lysosomes [which are a degradation pathway acting throughout the body] but does not control the ubiquitin system [which is active in muscle breakdown] 31 that is responsible for the bulk of muscle proteolysis 31.
[So insulin decreases protein breakdown/degradation throughout the entire body but does not inhibit protein breakdown specifically in muscle.]
Insulin increases the amount of protein deposited in muscle by directly increasing the rate of protein synthesis (40-60% as measured by lysine & phenylalanine disappearance from intracellular pools). For the most part (two exceptions) Insulin does not increase (or regulate) transmember amino acid transport. Therefore transportation of amino acids is not a primary mediator of insulin anabolic actions in muscle 40.
[So Insulin's primary modes of action are reduction of whole-body protein breakdown as discussed already & in muscle an increase in the rate of protein synthesis. Insulin draws on the intracellular pool of amino acids to affect this increased synthesis. It is possible to run out of amino acids from that pool. Insulin can suck the reservoir dry so to speak.
In addition insulin in general (there is an exception) does not increase the rate of transportation of amino acids across the cell membrane into the cell. That remains normal. But the benefit of insulin in muscle is that it increases protein synthesis. However other things are needed besides insulin to affect overall anabolism.]
Insulin draws on an existing intracellular pool of amino acids. When amino acid concentrations are maintained at levels higher than normal during systemic insulin administration insulin increased muscle protein synthesis 40.
[So anabolism occurs when both insulin increased protein synthesis occurs and amino acid levels are maintained higher then normal. The primary way to effect this is to increase amino acid/protein ingestion.]
Insulin does not significantly modify protein breakdown in muscle. It has been shown that, during adequate amino acid supply, the most important degradative system in muscle is an ATP-independent system that requires the presence of a specialized protein, termed ubiquitin. This system is not sensitive to insulin. Concerning protein breakdown insulin apparently plays a role only in the regulation of the lysosome activity. These intracellular organelles are not involved in the myofibrillar protein degradation in normal conditions, but only in the presence of low insulin levels or decreased amino acid availability) 31 .
[So again insulin will increase protein synthesis in muscle but will not inhibit protein breakdown. So in general anabolism will occur if more protein synthesis then protein breakdown occurs.]
Following protein degradation, the amino acids from the degradation event are either transported outward (or in the case of leucine oxidized) or are redirected back into protein synthesis. Phenylalanine & leucine have been shown to be redirected back into protein synthesis while lysine may not 30 .
Insulin induces hyperpolarization in the skeletal muscle cells by directly activating the sodium ion (Na+) and potassium ion (K+) -ATPase pump. Those amino acids which are strongly "attracted" to the electrochemical characteristics of the cell membrane are more readily taken up into muscle from the intracellular pool of amino acids. Alanine & lysine are two amino acids that have this attraction and are more readily drawn into muscle by insulin 30 .
[When protein in muscle is broken down and its constituents removed back to the amino acid pool, those amino acids may be removed from muscle pools entirely, may be reused for new synthesis or for some amino acids oxidized or used for energy. It would not benefit anabolism to lose the important amino acid leucine to oxidation.
Insulin which in general doesn't increase transport of amino acids from the pool into cells, does so for a few amino acids which use NA+ & K+ channels, namely alanine & lysine.]
The branched-chain amino acids (leucine, valine, and isoleucine) and the aromatic (phenylalanine and tyrosine) are preferably transported through system L . This sodium-independent system is unable to generate high transmembrane gradients for its substrates. It has been shown that the kinetic characteristics of system L are not influenced by insulin 30.
[So insulin which has no effect on this mode of transport does not increase the uptake of some very important amino acids.]
Blood flow has been found to increase local amino acid delivery to muscle and secondarily increase amino acid transport. This effect may be responsible for increase in leucine uptake.
[This is an extremely important way in which amino acids are drawn to muscle and into cells. This important amino acid leucine has been shown to make its way into cells via increase in blood flow.]
Alanine synthesis (which is a function of pyruvate) also increases in the presence of insulin because insulin increases glucose uptake & intracellular pyruvate in muscle 30 .
[Certain amino acids can be synthesized from the breakdown of other amino acids. Alanine is one of them. Alanine is often used for energy and so protein synthesis rate or anabolism may depend on the availability of alanine not yet oxidized. The fact that insulin increases alanine synthesis is a desirable effect.
Comment